Schedulers¶
Factories¶
- eztorch.schedulers.scheduler_factory(optimizer, name, params={}, interval='epoch', num_steps_per_epoch=None, scaler=None, batch_size=None, multiply_lr=1.0)[source]¶
Scheduler factory.
- Parameters:
optimizer (
Optimizer) – Optimizer to wrap around.name (
str) – Name of the scheduler to retrieve the scheduler constructor from the_SCHEDULERSdict.params (
DictConfig, optional) – Scheduler parameters for the scheduler constructor.Default:{}interval (
str, optional) – Interval to call step, if'epoch'call`step()at each epoch.Default:'epoch'num_steps_per_epoch (
Optional[int], optional) – Number of steps per epoch. Useful for some schedulers.Default:Nonescaler (
Optional[str], optional) – Scaler rule for the initial learning rate.Default:Nonebatch_size (
Optional[int], optional) – Batch size for the input of the model.Default:Nonemultiply_lr (
float, optional) – Multiply the learning rate by factor. Applied for warmup and minimum learning rate aswell.Default:1.0- Return type:
Dict[str,Any]- Returns:
Scheduler configuration for pytorch lightning.
Custom Schedulers¶
Cosine Annealing scheduler¶
- class eztorch.schedulers.LinearWarmupCosineAnnealingLR(optimizer, warmup_epochs, max_epochs, warmup_start_lr=0.0, eta_min=0.0, last_epoch=-1)[source]¶
Sets the learning rate of each parameter group to follow a linear warmup schedule between warmup_start_lr and base_lr followed by a cosine annealing schedule between base_lr and eta_min.
- Parameters:
optimizer (
Optimizer) – Wrapped optimizer.warmup_epochs (
int) – Maximum number of iterations for linear warmup.max_epochs (
int) – Maximum number of iterations.warmup_start_lr (
float, optional) – Learning rate to start the linear warmup.Default:0.0eta_min (
float, optional) – Minimum learning rate.Default:0.0last_epoch (
int, optional) – The index of last epoch.Default:-1Warning
It is recommended to call
step()forLinearWarmupCosineAnnealingLRafter each iteration as calling it after each epoch will keep the starting lr atwarmup_start_lrfor the first epoch which is 0 in most cases.Warning
passing epoch to
step()is being deprecated and comes with an EPOCH_DEPRECATION_WARNING. It calls the_get_closed_form_lr()method for this scheduler instead ofget_lr(). Though this does not change the behavior of the scheduler, when passing epoch param tostep(), the user should call thestep()function before calling train and validation methods.- Example::
>>> layer = nn.Linear(10, 1) >>> optimizer = Adam(layer.parameters(), lr=0.02) >>> scheduler = LinearWarmupCosineAnnealingLR(optimizer, warmup_epochs=10, max_epochs=40) >>> # >>> # the default case >>> for epoch in range(40): ... # train(...) ... # validate(...) ... scheduler.step() >>> # >>> # passing epoch param case >>> for epoch in range(40): ... scheduler.step(epoch) ... # train(...) ... # validate(...)